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ABSTRACT
Fitness trackers not just provide easy means to acquire physi-
ological data in real-world environments due to affordable
sensing technologies, they further offer opportunities for
physiology-aware applications and studies in HCI; however,
their performance is not well understood. In this paper, we
report findings on the quality of 3 sensing technologies: PPG-
based wrist trackers (Apple Watch, Microsoft Band 2), an
ECG-belt (Polar H7) and reference device with stick-on ECG
electrodes (Nexus 10). We collected physiological (heart rate,
electrodermal activity, skin temperature) and subjective data
from 21 participants performing combinations of physical ac-
tivity and stressful tasks. Our empirical research indicates that
wrist devices provide a good sensing performance in station-
ary settings. However, they lack accuracy when participants
are mobile or if tasks require physical activity. Based on our
findings, we suggest a Design Space for Wearables in Re-
search Settings and reflected on the appropriateness of the
investigated technologies in research contexts.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Wearable Technology, Validation, Stress, Affective
Computing

INTRODUCTION
Recent advances in consumer wearables allow the ubiquitous
collection of health data, such as physical activity or sleep
in everyday life. Enabled through the variety of affordable
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consumer wearables flooding the market1 every year, wire-
free and independent tools for assessing physiological data are
becoming increasingly valuable for researchers and scientists
alike. With the feasibility to measure signals (e.g. heart rate
response) ’on the fly’ and in daily life situations, there come
along immense opportunities.

Rosalind Picard was among the first to emphasize the impor-
tance of sensing wearables. In the article "Affective Wear-
ables" [48], she discussed application scenarios and presented
a prototype for recording physiological data, like blood vol-
ume pressure, Galvanic Skin Response and respiration. In the
past years, various systems exploiting the feasibility to access
physiological data have been published approaching more and
more user-adaptive interfaces [6] and systems [57]. Emerging
fields in HCI, like calm-computing [38] and avoidance of tech-
nostress [74], can benefit from ubiquitous, wearable affect and
stress sensing technology and adaptive systems.

However, much of the understanding of physiological sensing
is based on high accuracy lab equipment and it remains un-
clear how well consumer devices are suited for this purpose.
Khusainov et al. [36] discuss in their survey paper that wear-
able sensors often lack accuracy and appropriate sampling
rates. Furthermore, not every wearable system delivers raw
data; e.g. the Fitbit and Jawbone2 device families do not allow
users to assess their raw physiological data. Consequently,
there is a need to evaluate the reliability of wearable consumer
technology with regards to their accuracy and suitability for
physiological and psychological research applications.

In this paper, we perform a comparison between two wrist-
worn devices with optical heart rate sensors (Apple Watch,
Microsoft Band 23) against a heart rate chest strap (Polar H74)
and a laboratory measurement instrument (Nexus 10 kit) under
different physical and stressful conditions. To evaluate the

1The market value for wearable devices is forecasted to be almost 6
billion USD by 2018 [32].
2www.fitbit.com and www.jawbone.com
3www.apple.com/watch and www.microsoft.com/microsoft-band
4www.polar.com
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appropriateness of the aforementioned wearables, we perform
the following research activities:

1. Comparing accuracy in physiological data measured by the
different wearable technologies

2. Examining how physiologically measured stress is affected
under stationary and physical activity

3. Investigating correlations between subjective measures and
physiological data

4. Introducing a Design Space for Measurement Tools, reflect-
ing five dimensions which are important to consider for the
choice of measurement technology in research contexts

RELATED WORK
Our research addresses the feasibility of consumer smart wear-
ables for research settings with a focus on stress assessment.
We therefore provide background information on physiologi-
cal and subjective perceived measures to detect stress and how
wearables can provide sufficient data in this field.

Physiological Data and Stress
The human body is a complicated and continuously working
system. We receive many physiological responses indicating
stress; we breath faster, blood pressure and pulse rate increase,
and we begin to sweat, to name only a few indicators. These
reactions are attributable to the activation of the sympathetic
nervous system which autonomously triggers a series of phys-
iological changes [13, 64]. Those changes can be picked up
by sensors to make stress predictions.

The heart rate signal, as an indicator of physiological changes,
has been used as in various studies among different disciplines
such as medicine [26], psychology [22, 59], and HCI [43] due
to its sufficient reliability and data richness. Electrodermal
activity (EDA), which is mostly referred to as the activation of
sweat glands and hence can be called Galvanic Skin Response
(GSR) or skin conductivity [14], can be found in prior work as
an indicator for cognitive load [62], stress [29] and also as a
"predictor of emotional responses to stressful life events" [46].
As a third measure, we choose skin temperature due to its good
prediction ability indicating stress [35] through significant
changes in body temperature [71].

Assessing Physiological Data through Wearables
Recently, fitness trackers and smart watches became in-
creasingly popular and ubiquitous. While early devices fo-
cused merely on activity tracking via step count or flights of
stairs climbed, modern devices incorporated additional bio-
physiological sensors such as Photoplethysmography (PPG),
skin conductance or skin temperature sensors to provide a
fuller picture of the consumers fitness and health patterns.
Various device manufacturers provide devices with closed sys-
tems and proprietary algorithms for the estimation of physical
activity, heart rate or energy expenditure, but evidence for the
validity and reliability of the provided health data is sparse for
the variety of devices.

Electrocardiography (ECG) is the process of recording the
electrical activity of the heart and it is widely used to extract
the heart rate with electrodes placed on the chest and by de-
tecting peaks in the signal. On the contrary, consumer devices

commonly rely on using optical Photoplethysmography (PPG)
sensors to extract heart rate from peaks in the blood flow under
the skin [68]; this happens predominantly on the wrist. De-
pending on the placement of the optical sensor, there is a time
delay in the detected peak in blood flow caused by a heart beat
called Pulse Transit Time (PTT). This can potentially lead to
errors in beat detectiion; still, various studies compared both
technologies for their ability to detect heart beats and heart
beat intervals and found good correlation in the ECG gold
standard and PPG [41, 49, 60].

Instead of considering the beat-per-beat detection, various
studies focused on comparing the reported heart rate; there is
evidence that PPG devices show a decline in accuracy com-
pared to the gold standard with increased physical activity
and heart rate [34, 47, 68]. Further, Spierer et al. [65] found
particular differences in heart rate agreeability depending on
skin pigmentation between the two wrist-worn devices Mio
Alpha and Omron HR500U; while sensitive skin types (Type
II on Fitzpatrick Scale [23]) showed similar low error rates, the
error rates significantly increased for the Mio Alpha (for skin
type V). These findings highlight a manufacturer dependent
variation in accuracy.

Subjective Measures as Indicators for Stress
Apart from the physiological indicators of stress based on
the sympathetic nervous system’s reactions, there are self-
rating measures to assess stress. While in the beginning of
the research established around stress, subjective assessment
methods alone were used [12], later questionnaires have been
applied as ground truth measures to compare against other
measures, i.e. physiological sensors. Kramer [37] argues that
physiological sensors captures changes that can be monitored
within seconds whereas subjective rating of one’s stress level
only provide snapshots. On the contrary, subjective assessment
are tools easy to operate for participants and experimenters.

One tool to assess affective states is the Self-Assessment
Manikin (SAM) [11]. This tool quickly and reliably collects
the participants’ perception of their moods on three dimen-
sions: arousal, valence and dominance. Its values have been
shown to match emotional and stress responses [24, 51] and
the responses were found to be cross-cultural observable [45].

COMPARING DIFFERENT SENSING TECHNOLOGIES
In this work, we aim to validate devices with 3 different heart
rate sensing technologies for their ability to infer stress and in-
creased arousal in a controlled lab environment: two consumer
wearables with optical heart rate technologies (Apple Watch
Series 2 and Microsoft Band 2), an ECG-belt device (Polar H7)
and a laboratory measurement instrument with ECG adhesive
electrodes (Nexus kit 10). In the following, we will present
the underlying concept of our work explaining our choice of
our wearables and measures, further deducing our hypotheses
from related literature.

Choice of Physiological Stress-indicating Measures
Several studies used physiological measures i.e. heart rate,
electrodermal activity, and skin temperature to detect stress
and showed correlation with subjective stress responses [56].



Moreover, the combination of these measures has proved to be
a reliable indicator in e.g. psychology [2, 4], for the develop-
ment of a non-invasive real-time stress tracking system [39],
in a real-world driving tasks to determine the driver’s stress
level [28], or for non-invasive stress detection in HCI [5]. This
becomes increasingly interesting with respect to future works.

Choice of Sensing Technologies
When it comes to measuring heart rate, there are two prevalent
technologies: Photoplethysmography (PPG) and Electrocar-
diography (ECG). Most wrist-based consumer devices rely
on optical heart rate sensing with PPG sensors; however, the
research gold standard is ECG [34] whereby heart beats are
detected via the electrical signal-signature of the heart. Elec-
trodes can hereby either be self-adhesive and stick-on or held
on place by an elastic chest strap. With focus on heart rate,
we picked the following devices for these sensing technology
categories.

The Apple Watch, as a popular smartwatch with fitness capa-
bilities in form of physical activity and heart rate tracking. In
several studies, the Apple Watch performed best compared to
other wrist devices in terms of heart rate error and correlation
with the gold standard device [16, 63, 73]. The Microsoft
Band 2 fitness tracker, as another optical heart rate device, has
been chosen for its rich sensor set and accessibility of data.
It is one of the few consumer wearables incorporating skin
conductance and skin temperature sensors.

Contrary to the often used stick-on ECG-electrodes used in
medical and laboratory settings, chest-belt heart rate monitors
can be used without the need for adhesives due to the elec-
trodes being held in place by an elastic strap. This technology
has been shown to have a high accuracy [25] and have been
used as criterion devices in related work [66]. We chose the
Polar H7 chest strap as an exemplary device for our study
based on its ability to share sensing data via Bluetooth to a
mobile phone.

The chosen wearables provide programming interfaces for the
iOS environment which was leveraged to build a proprietary
app for the data collection, aggregation and synchronization
to provide the necessary data for our study purpose.

As a laboratory measurement instrument, we use the Nexus-
10 MK2 by Mind Media5. This is a wireless device which
is targeted for biofeedback applications and psychological
research. It offers a range of channels for various sensors. In
this study, we utilized the ECG signal through self-adhesive
electrodes (Lead II setup, as instructed in the device manual),
GSR finger electrodes, and skin temperature sensor placed
at the participants’ forearm. The manufacturers BioTrace+
software allows real-time data visualizations, recording and
marker placement functionalities.

Hypotheses
In this work, we address the devices’ ability to identify dif-
ferences in physiological data during relaxed and stressful
situations and how physical activity affects the measurements
5www.mindmedia.info/CMS2014/en/products/systems/
nexus-10-mkii

recorded by consumer devices. Further, we investigated corre-
lations between arousal as a stress indicator and physiological
data.

Based on previous research, we hypothesized that there will
be a lessened accuracy and correlation of the wrist-devices
devices in physical activity compared to stationary activity,
i.e. a difference in heart rate recorded via ECG and PPG. The
PPG signal, which is used in the wrist-worn devices Apple
Watch and Microsoft Band, is prone to movement artifacts [1].
Validation studies such as Tamura et al. [68] confirmed the
decreased accuracy of wrist-measured heart rate in consumer
devices. Therefore, we phrased our hypotheses as follows:

H 1a There is a difference in the physiological data mea-
sured by different devices under physical activity

H 1b There is no difference in the physiological data mea-
sured by different devices under stationary activity

Further, there is related work [22, 43, 62], indicating that phys-
iological and subjective measures differ in relaxed compared
to stressed states. According to our experimental design, we
added the dimension of physical activity. This enabled us
to verify the aforementioned finding with respect to physical
activity, hypothesizing:

H 2a There is a difference in physiological data between
stressful and relaxed situation under physical activity

H 2b There is a difference in physiological data between
stressful and relaxed situation under stationary activity

Lastly, we focused on the relation between subjectively per-
ceived measures and physiological data. The subjective mea-
sures arousal, valence and dominance were hereby assessed
with the Self-Assessment Manikin [11]. This was accompa-
nied by the additional assessment of ’awakeness’ and ’tension’
as argued by former work [15, 58].

Prior work from neuropsychology suggested that there are
correlations among neurobiological processes triggering the
increase of stress hormones and perceived stress [24, 55],
arousal [24, 51], and valence [24, 51]. Other studies found that
heart rate activity increased when arousal and valence were
higher [76]. Salimpoor et al. [54] showed that arousal and
valence strongly correlated with electrodermal activity, body
temperature, heart and respiration rate as well as blood volume
pulse. Remarkably, dominance was not found to be correlating
with an increase of stress hormones [51]. Due to these results,
we aimed to investigate the following hypotheses:

H 3a There is a correlation in between stress perception and
physiological data

H 3b There is a correlation between arousal and physiologi-
cal data

H 3c There is a correlation between valence and physiologi-
cal data

H 3d There is no correlation between dominance and physi-
ological data

We answered these hypotheses by conducting a user study
involving four trials combining activity and stress, which we
will describe in the following section.

www.mindmedia.info/CMS2014/en/products/systems/nexus-10-mkii
www.mindmedia.info/CMS2014/en/products/systems/nexus-10-mkii


USER STUDY
In the following we, describe the measures of our experiment,
the conditions and tasks we used in our study design, as well
as the procedure and demography of our participants.

Study Design
For this study, we chose a within-subject design implying that
each participant underwent all of our four conditions lasting
20 minutes in total (5 minutes per condition). We randomized
the sequence of conditions according to Latin Square. Each
condition was a combination of the two levels for each of our
two independent variables, namely physical activity and stress.
These two levels for physical activity consisted of walking
on a treadmill and being seated, whereas stress was split into
performing mental arithmetic tasks (MAT) and relaxing while
listening to meditation music. Hence and by using factorial de-
sign, the conditions relaxed walking (RW), relaxed stationary
(RS), MAT walking (MW), and MAT stationary (MS) resulted
(see Figure 1). A similar setup of conditions has been used by
Sun et al. [67].

Independent Variables
Measurement Devices
For our study, we focused on two wrist-based consumer wear-
ables (Apple Watch Series 2, Microsoft Band 2) equipped with
physiological sensors, one chest strap heart rate monitor (Po-
lar H7 chest belt), and a laboratory measurement instrument
(Nexus 10 kit) serving as independent variables.

Physical Activity and Stress
Further, physical activity and stress served as our independent
variable. Stress was divided into either performing mental
arithmetic tasks or relaxing while listening to meditation mu-
sic. Differentiating physical activity, we asked participants
to either walk on a treadmill in their own, physiologically de-
manding pace or to remain stationary on a comfortable chair.

Dependent Variables
Physiological Data
As dependent variables, we recorded physiological data,
namely heart rate, EDA and skin temperature, from the afore-
mentioned devices. As discussed previously, these measures
have been shown to provide high reliability indicating stress [2,
35, 62].

Self-Reported Arousal, Valence, and Dominance
For the self-reported measures for stress and affective state,
we applied the widely-used Self-Assessment Manikin Scale
(SAM) [11]. This scale allows the non-verbal assessment of
current affective state, respectively valence (pleasure), arousal
and dominance, through pictures. As in the original work by
Bradley and Lang [11], we utilized a 9-point rating scale for
each dimension whereby participants were instructed to place
a ’x’ on any of the five figures or between two figures.

The classical arousal dimension in this and similar models, e.g.,
Russell’s Circumplex Model of Affect [53], does not differen-
tiate between experienced tension; but based on Thayer [69],
arousal can be further characterized by energetic arousal (rang-
ing from wide-awake to tired) and tense arousal (nervous to

Baseline Task:
Relaxed

Stationary Walking Stationary

Fixed Task:
Relaxed

Walking

MAT MAT

Walking // Stationary

Figure 1: The figure shows the study overview and depicts the
sequence of the trials according to our study design. It con-
sisted of four trials for each participant including the baseline
task in the beginning and the fixed task in the middle. In the
second and the third trial we switched between the walking
and stationary condition in counterbalanced order.

calm). According to the recommendation of [58], we added
two additional questions: a 5-point self-rating Likert-item for
each dimension assessing tension and wakefulness [30, 52].

Self-Reported Stress
For the assessment of how stressful the task has been perceived,
we used a single 5-point Likert scale ranging from 1(="not at
all stressful") to 5(="very much stressful") [21, 28].

Tasks and Stimulus Material
Participants were asked to relax while listening to medita-
tion music6 and to perform mental arithmetic operations. As
stimulus material, we presented mental arithmetic tasks for
five minutes on a 60-inch display placed right in front of the
participants. This task has been proven to induce stress [8]
and to affect physiological parameters [27, 42, 61, 70]. The
calculations, addition and subtraction of two-digit numbers
ranging from 0-100 and including negative solutions, had be
completed within 6 seconds each. A timeline signifying the
time left for each task was displayed on the screen. Correct an-
swers were rewarded with a green screen displaying "Correct".
For false answers or when the time was up, participants heard
a buzz sound and the screen displayed "False" or "time over"
on red background. The visual countdown and feedback (both
visual and auditory) had been proven to increase subjectively
perceived and physiological stress [62]. Our study setup was
inspired by Vlemincx et al. [72]. To perform the walking task,
we asked participants to walk for five minutes on a treadmill
(model: ProFitness Sierra motorized).

Participants and Procedure
For our laboratory study, we recruited 24 participants includ-
ing one pilot test person via university mailing lists, leaflets
and personal recruitment campaigns. Two participants and
the pilot were excluded from data analysis due to technical
problems during the data acquisition. The mean age of the
6As meditation music we used song number 14 from the album ’72
Ambient Meditations’



Heart Rate Skin Temperature EDA

Nexus Polar Microsoft
Band

Apple
Watch Nexus Microsoft

Band Nexus Microsoft
Band

Mean 66.16 66.89 66.55 66.27 32.1 30.02 13.38 0.32
RS Median 63.73 66.24 64.82 64.04 32.16 30.47 1.91 0.19

Std. Dev. 10.6 11.26 9.66 10.64 2.64 1.51 50.26 0.38

Mean 69.5 69.06 68.44 68.83 31.14 29.97 6.21 0.8
MS Median 68.81 69 68.6 68.41 31.58 29.87 3.9 0.48

Std. Dev. 10.1 10.87 7.62 9.93 2.04 1.88 10.51 1.14

Mean 85.55 87.04 72.38 94.86 30.76 29.63 14.99 0.74
RW Median 89.26 88.08 73.56 93.45 30.98 29.75 3.35 0.43

Std. Dev. 10.48 11.41 7.62 19.17 1.85 1.77 49.94 1.05

Mean 88.93 89.3 72.82 98.61 30.63 29.34 15.06 0.79
MW Median 89.13 88.8 73.48 95.25 30.97 29.12 3.44 0.39

Std. Dev. 10.15 13.38 8.75 18.97 1.85 1.55 49.92 1.13

Table 1: This table presents descriptive values of the physiological measures over all participants and grouped per each condition
(relaxed stationary - RS, MAT stationary - MS, relaxed walking - RW, MAT walking - MW) and device.

21 remaining participants was 28.9 (SD = 4.5) years; among
them were 8 females and 13 males. During the recruitment
process, it was ensured that participants were not diagnosed
with any heart conditions, mental illnesses or learning disabili-
ties. Likewise, all participants assured that they did not suffer
from alcohol and/or drug addiction. Furthermore, they were
asked to refrain from caffeine three hours before the experi-
ment started. Participants were given a £15 gift voucher for
taking part in the 1.5 hour long experiment session.

Initially, participants were introduced to the experiment en-
vironment at Body-Centric Lab of the Queen Mary Univer-
sity London. Before signing the consent form, they were
briefed on the study background as well as the sensor place-
ment on the body. Subsequently, the were asked to fill in an
initial assessment consisting of demographic questions, self-
reported fitness assessment, and smoking behavior as inquired
in Weitkunat et al. [75]. Participants were given a short tread-
mill introduction and the mental arithmetic task was explained.

Next, the participants were asked to put on the chest-worn
ECG sensors (Nexus 10 ECG with pre-gelled, disposable elec-
trodes and Polar H7 chest belt). To ensure proper sensor fit,
they were provided with visual material from the manufactur-
ers on the correct sensor placement. The wrist-worn devices
(Apple Watch and Microsoft Band 2), as well as finger skin
conductance and skin temperature sensors were placed on the
participants’ left arm by the researcher. Correct data trans-
mission for all sensors was initially checked by the researcher
before the study started. During the experiment each partic-
ipant was video recorded for traceability purposes given the
participant’s consent. Starting with the baseline condition,
all participants were asked to remain seated for five minutes
listening to meditation music via wireless headphones.

The conditions were assigned to each participant in counterbal-
anced order, alternating between walking and stationary while
mental arithmetic tasks should be performed. This design has

been followed for the last trial, while in the third trial partici-
pants were asked to walk while listening to relaxing music via
wireless headphones. Please also refer to Figure 1 for a sketch
of the study design depicting the sequence of conditions. Each
trial (including the baseline) was followed by assessment of
the SAM questionnaire including single-items on wake/tense
arousal and perceived stressfulness of the task.

This study was reviewed and approved by the Ethical Commit-
tee of our institute.

RESULTS
Analyzing the physiological and subjective data from our par-
ticipants, we will present the results of our statistical analysis
following the structure of our hypothesized outcomes.

Data Preprocessing
For the analysis, we took a period of 4 minutes per each con-
dition, meaning we excluded the first 50 and last 10 seconds
due to novelty effects. Furthermore, we converted the Mi-
crosoft Band’s provided skin resistance (R) measures (kohms)
to match the unit of skin conductivity (G) provided by the
Nexus device (micro−mho). We applied the following for-
mula: G = 1

R ∗1000.

The descriptive measures (Mean, Median, Standard Deviation)
for the recorded physiological data by each device and among
all four conditions are presented in Table 1.

As proof of concept that the chosen study setup and task was
stress-inducing, we compared the subjective stress and arousal
in the different conditions; an overview is depicted in Figure 2.
A comparison of the medians highlights that participants expe-
rienced higher arousal and stress in the MAT tasks compared
to the relaxing-music tasks. These results indicate that the
chosen tasks (MAT - mental arithmetic tasks) induced stress
and, thus, we can expect to see a stress reaction in the devices’
physiological data in the MS and MW conditions.
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Figure 2: The Boxplot depicts the median values and inter-quartile range of the subjective measures for all participants and
grouped among conditions (relaxed stationary - RS, MAT stationary - MS, relaxed walking - RW, MAT walking - MW). It suggests
that the MAT conditions MS and MW were perceived more stressful.

H1: Investigating Physiological Data among Devices
We hypothesized differences in the physiological data under
physical but not under stationary activity, hence, we investi-
gated correlation referring to data accuracy and additionally
performed Friedman and Wilcoxon Signed-Rank Tests for
heart rate, skin temperature, and EDA for each physical activ-
ity condition.

After checking for normal-distribution of the physiological
data, we performed Spearman correlations7. The results re-
veal moderate to strong correlations between the heart rate
measures of the different devices over the whole data set.
Considering Spearman’s Rho for each physical condition sep-
arately, the physical activity showed to have a strong impact
on the significance and strength of the device data correlating
with each other.

Whereas in the stationary conditions, all devices correlated
very strongly (rs > .95, p < 0.01) with each other, there was
only one strong correlation between the Polar and Nexus de-
vice and one moderate correlation between the Apple Watch
and Polar under walking conditions. An overview of the cor-
relation coefficients can be found in Table 2. For skin tem-
perature measures, there was a moderate overall correlation
between the Nexus and Microsoft Band (rs = .553, p = 0.000).
The correlation between the two devices was moderate in the
stationary condition (rs = .537, p = 0.004) and in the walking
condition (rs = .472, p = 0.002). For the electrodermal activ-
ity measures, we found a weak correlation between the Nexus
and Microsoft Band (rs = .234, p= .037). There were no other
significant correlations found for the separate consideration of
walking and stationary conditions.

Differences in Heart Rate
Testing on differences between the four devices regarding
heart rate recording in the stationary activity condition, the
Friedman Test revealed that there was no significant difference
for heart rate amongst the devices; χ2 = 4.286 (p = .232).

7The strength of correlation was determined as follows: 0.8-1.0 =
very strong, 0.6-0.79 = strong, 0.4-0.59 = moderate, 0.2-0.39 = weak,
and <0.2 = very weak, after Evans [18]

Apple
Watch Polar Microsoft

Band

Nexus
Overall .795** .889** .578**

Stationary .989** .986** .966**

Walking NS .617** NS

Apple
Watch

Overall .851** .592**

Stationary .993** .972**

Walking .411* NS

Polar
Overall .626**

Stationary .977**

Walking NS
** p < .01,* p < .05, NS - not significant

Table 2: Spearman’s Rho for the heart rate values of the 4
devices Nexus, Polar, Apple Watch and Microsoft Band.

In contrast, significant differences were found for the walk-
ing condition indicating that the devices reported disparate
heart rate readings; χ2 = 43.133 (p = .000). The post-hoc
Wilcoxon Signed Rank Test with a Holm-Bonferroni cor-
rection8 for the six comparisons were performed. It indi-
cated no significant differences in the heart rate measures
between the pairings of Nexus, Apple Watch and Polar. On
the contrary, the Microsoft Band (MSB) reported a signif-
icant lower heart rate compared to the Nexus (N), Polar
(P) and Apple Watch (AW); ZN,MSB = −4.773, p = .000;
ZP,MSB =−4.583, p = .000; ZAW,MSB =−4.156, p = .000.

Differences in Skin Temperature
For skin temperature, performing the Wilcoxon Signed-Rank
Test indicated a significant difference between the Nexus and
Microsoft Band among both physical activity conditions alike.
The Microsoft Band showed a lower skin temperature in gen-
eral regarding stationary condition (Z = −4.503, p = .000)
8Holm’s sequential Bonferroni correction of α = 0.05 resulted
in α/6 = 0.0083,α/5 = 0.01,α/4 = .0125,α/3 = .017,α/2 =
.025,α/1 = .05



Polar Apple
Watch

Microsoft
Band

Overall Mean Error 6.84 8.28 12.06
Std. 12.34 15.52 12.04

Stationary Mean Error 3.22 3.42 5.44
Std. 4.07 4.12 5.96

Walking Mean Error 10.28 14.41 19.03
Std. 16.03 21.37 12.87

Table 3: Average Error percentage of the heart rate signals
compared to the Nexus 10 reference device. Highlighted are
the lowest and highest error rate.

and walking condition (Z =−4.256, p = .000). On average,
the Microsoft Band’s reported skin temperature value was
1.31°C (Mdn = 1.40°C; σ = 2.32°C) lower than the Nexus
skin temperature over all conditions.

Differences in Electrodermal Activity
Lastly, the Wilcoxon Signed-Rank Test revealed a significant
difference of EDA measures between the Nexus and Microsoft
Band among both physical activity conditions. The Microsoft
Band showed a lower skin conductance in general with re-
spect to the stationary condition - Z =−5.125, p = .000 and
walking condition - Z =−5.024, p= .000. Here again, the Mi-
crosoft Band’s reported EDA was 11.817 Micro-Mho (Mdn =
2.500 Micro-Mho; σ = 44.188 Micro-Mho) lower on average
than the Nexus EDA over all conditions.

Error Rate of Heart Rate
Comparing the error rates to the laboratory measurement in-
strument (Nexus 10), revealed further differences among the
two physical activity conditions. The error rate for every five
second data window was calculated for each device d as

errord =
|hrNexus−hrd |

hrNexus
∗100

Considering the average error rates, the Polar chest belt per-
formed best followed by the Apple Watch. In favor of our
hypothesis, the error was higher in the walking conditions.
The mean and standard deviation of those errors are presented
in Table 3.

H2: Comparing Stress in Physical and Stationary Activity
According to our second hypothesis, we compared the physi-
ological data for both, stressful and relaxed, situations under
stationary activity and under physical activity. To test this, we
performed two planned Wilcoxon Signed-Rank Tests for the
relaxed and MAT conditions under the same physical activity.
For the two planned comparisons, we applied a Bonferroni
correction on α = 0.05 which resulted in α/2 = .025.

The Nexus reference device was able to pick up a significant
increase in heart rate in the MAT condition while participants
were seated; Z =−2.381, p = 0.017. None of the other heart
rate monitors registered this change. Both the Nexus and
Microsoft Band revealed differences in electrodermal activity
while participants were stationary; Z =−3.285, p= 0.001 and

arousal wake
arousal

tense
arousal

perceiv.
stress

Heart
Rate

AW .265* .244* NS .252*

MSB .244* NS NS NS
Polar .235* .236* NS .248*

Nexus .323** .277* NS .284**

EDA MSB .361** .272* .337** .376**

Nexus .297** .362** NS .296**

Skin
Temp

MSB NS -.221* NS NS
Nexus -.259* -.367** NS -.262*

** p < .01,* p < .05, NS - not significant

Table 4: Correlation of subjective measures and within-subject
normalised physiological data from Nexus (highlighted), Polar,
Microsoft Band (MSB) and Apple Watch (AW)

Z =−3.058, p = 0.002. Again in the stationary condition, a
change in skin temperature was solely registered by the Nexus
device; Z =−2.416, p = 0.016.

While walking on the treadmill performing MAT simultane-
ously, none of the devices was able to detect any changes in
physiological data compared to the task where participants
walking and listening to relaxing music.

H3: Correlating Subjective and Physiological Data
We hypothesized correlations between physiological data and
subjectively perceived stress, arousal and valence. We per-
formed Spearman correlations on the non-normally distributed
data. To control for individual differences in the participants’
heart rate, skin temperature and EDA responses, the physi-
ological data was transformed using within-subject z-score
standardization, as suggested by [7]. The results of the corre-
lation are presented in Table 4.

The heart rate provided by Nexus, Apple Watch and Polar
showed correlations with perceived arousal, wake arousal and
stress. The Microsoft Band’s heart rate showed mere cor-
relation with the arousal measure. On the contrary, while
EDA measures of both Nexus and Microsoft Band showed
a weak agreement with arousal, wake arousal and stress, the
Microsoft Band’s EDA measure, additionally and as the only
sensor source, correlated with tense arousal. The reference de-
vice’s skin temperature measure correlated negatively with the
arousal, wake arousal and tense arousal, while the Microsoft
Band showed mere correlations of skin temperature with wake
arousal.

Contrary to our hypothesis, none of the physiological data
sources showed correlations with valence. Additionally, we
were able to support our last hypothesis on the absence of
a relationship between dominance and physiological data by
applying the aforementioned statistical operations.

DISCUSSION
In this section, we discuss the results of our study with hind-
sight on our three hypotheses. Moreover, we present a Design



Space for using wearable devices in research settings, and
further we conclude limitations of our study. We were able to
proof our concept and study apparatus of inducing subjective
stress with our implementation of the MAT task. The arousal,
wake arousal and perceived stress ratings were significantly
higher for the MAT tasks compared to the conditions where
participants were listening to relaxing music.

Reliability of Devices in Different Physical Activity
According to Hypothesis 1a and 1b, we tested the differences
amongst the sensing technologies and devices in both physical
activities. We hypothesized that there would be no difference
between the device data in stationary conditions but in walking
conditions, due to decreased accuracy of wearables in move-
ment. We could partly, and for a subset of devices and sensor
streams, confirm both hypotheses.

Heart Rate
In the stationary conditions, we found strong correlations re-
garding heart rate values among all four devices. Furthermore,
the Friedman Test showed no significant difference in the heart
rate measures. This supports our Hypothesis 1a that heart rate
values are consistent among the devices and highlights the
accuracy of the devices in a stationary setting.

Contrary and supporting H 1b, our results show discrepancies
in heart rate values recorded by different devices in the walk-
ing condition. All comparisons involving the Microsoft Band
indicated significant differences in the recorded heart rate val-
ues, thus, we concluded this wrist-worn PPG heart rate sensor
as the least accurate under movement. Under the walking con-
ditions, a look at the average reported values of the Microsoft
Band - as depicted in Table 1 - indicate that it tends to under-
report the heart rate compared to the gold standard Nexus; on
the contrary, the Apple Watch tends to reports higher heart rate
values, though it was not significantly different. Further and in
walking, both wrist-worn devices showed no correlations with
the laboratory measurement instrument (Nexus 10) confirming
that the PPG technology performs weaker under movement.
As expected, the Polar H7 ECG chest strap performed closest
to the Nexus ECG.

Skin Temperature
The Microsoft Band’s reported skin temperature tended to be
lower than the Nexus skin temperature by 1.31°C (±2.32°C)
over all conditions and performed, hence and on first sight,
against our hypotheses H1b. Considering the absolute skin
temperature values, both devices (Microsoft Band and Nexus)
provided inconsistent data through both physical activity con-
ditions. On the contrary, the correlations between both devices
were consistently strong, no matter of the physical activity.
Both findings indicate, that these deviations in absolute values
can be explained by the different sensor placements rather
than an influence of physical activity; the Nexus sensor was
placed on the upper forearm while the Microsoft Band was
attached to the wrist.

Electrodermal Activity
The electrodermal activity data from the Microsoft Band and
Nexus showed mere weak correlations over all conditions. But
looking at the distinct physical activity conditions, there were

no significant correlations which supports our first hypothesis
and neglects the second. Further, there was a remarkable
difference of 11.817 Micro-Mho (±44.188 Micro-Mho) over
all conditions, regardless physical activity. The big variation
can be partly explained with the sensitive skin conductance
sensors loosing skin contact for small periods of time.

Error Rate of Heart Rate
We observed that error rate increased more than threefold for
all devices in the walking conditions. This effect can be ex-
plained through an increased sensor noise in movement and
an increased inaccuracy of PPG wrist-worn devices in higher
heart rate ranges. Overall, the Polar ECG chest belt provided
more accurate data compared to the wrist-worn PPG sensors.
From the wrist-worn devices, the Apple Watch performed
best in our study. This goes conform with findings from re-
lated work [63, 16]. Hence, this contributes to confirming
our Hypothesis 1a; there is a difference in physiological data
measured by different devices under movement.

Stress Related Changes in Physiological Measures
Following our Hypotheses 2a and H 2b, we investigated differ-
ences in physiological data indicating stress between between
stationary and physical activity. The Nexus was the only de-
vice to fully support our Hypotheses 2a reporting significant
differences in heart rate, electrodermal activity and skin tem-
perature under stationary activity enabling us to trace a stress
reactions. It detected a significant increase in heart rate and
electrodermal activity during the MAT condition compared
to the relaxed condition under stationary activity. Similar ef-
fects were observed for skin temperature measure. It showed
the expected (according to [71]) decrease in skin temperature
while performing the MAT compared to the relaxed condition
in stationary activity. From the consumer range, the Microsoft
Bands EDA sensor was the only one to show an increase
in skin conductance while participants remained stationary.
Neither the PPG wrist devices nor the Polar ECG chest belt
were able to detect changes in heart rate data indicating stress
responses. Due to the lack of accuracy of data recording pro-
vided by the tested devices under movement conditions, as
discussed within Hypotheses 1a and 1b, we cannot fully test
our Hypothesis 2b under movement.

Subjective Measures Linked to Physiological Data
Lastly, we hypothesized correlations between physiological
measures recorded with our devices and the subjectively as-
sessed measures (e.g. arousal, perceived stress). We hereby
made the assumption that the physiological measures will cor-
relate with valence, arousal, and perceived stress (H 3a-c). We
further suggested, based on related literature, that there will
be no correlations between dominance and the physiological
sensor data (H 3d). Our results show that we are able to sup-
port all hypotheses, except H 3c - the correlation with valence.
Hereby, all physiological measures recorded with the Nexus
device revealed the strongest correlations what further strength-
ens the reliability of the Nexus kit as a suitable measurement
tool. The Apple Watch and Polar heart rate sensor data hinted
correlations regarding arousal, wake arousal and perceived
stress, too. Microsoft Band’s EDA sensor showed significant
evidence for a correlation between all three arousal measures,
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Figure 3: Illustrative schematic of the design space evaluation
for our 4 test devices (Nexus, Polar, Apple Watch, Microsoft
Band) in 5 criteria dimensions (data reliability, comfort of
attachment, mobility, data richness, and data accessibility)

perceived stress and physiological data. On the contrary, its
heart rate and skin temperature sensors did not perform well
showing mere correlations regarding only one subjective mea-
sure. This is consistent with our previous results rendering the
Microsoft Band the least reliable device in our study setup.

Design Space for Wearables Used in Research Settings
Based on our observations from the study and common eval-
uation criteria for wearable technology, like ’comfort’ [33]
or ’data reliability’ [19], we inferred a design space for wear-
ables used in research settings providing recommendations for
suitable devices in different research scenarios. For this, we
derived the following five dimensions partly grounded in the
taxonomy by Khusainov et al. [36]: data reliability, comfort
of attachment, mobility, data richness, and data accessibility.
Lastly, we discuss the setting appropriateness of our wearables
based on their specific advantages and disadvantages. An il-
lustration of our assessment of our test devices can be found
in Figure 3.

Data Reliability
Most of all, our and previous studies confirmed that there are
variations in sensor data accuracy which results into a limited
reliability. The Nexus device, as a laboratory tool, was the
only device to show stress-related, statistically valid changes
in heart rate, skin temperature and EDA. Wrist-worn, PPG-
based devices tend to be less reliable in measuring heart rate
than devices deriving heart rate values from ECG data. This
effect is worsened in conditions involving physical movement.
But there are even differences amongst devices using PPG
technology. In our study, we identified the Microsoft Band
2 to be the most unreliable in terms of heart rate and skin
temperature data while the Apple Watch performed accept-
able. Surprisingly, the Microsoft Bands EDA sensor showed
correlations with all subjective stress measures, which makes
it a promising device for detecting stress. On the contrary,
while heart rate chest belts with ECG technology proved to be
more reliable than PPG sensors (i.e. [25]), we could not find

significant differences in sensing data between stressed and
relaxed conditions with the Polar device.

Comfort of Attachment
Comfort or wearability of wearables are not just an important
factors for acceptance of the device [9], but play an important
role for the study device choice. While the wrist wearables are
designed to be worn all day long and are suitable for long-term
in-situ studies due to the placement natural locations to wear
technology [50], the Nexus and Polar are more purpose-led in
their functionality and are designed to be worn for certain oc-
casions. The Polar device is suitable for e.g. field studies due
to its easy and quick attachment, but it can be visible through
tight-fit clothing and may not be comfortable, especially for
female participants, due to its placement. The Nexus, as a labo-
ratory measurement tool with several applications, is relatively
heavy (500 grams9) and requires detailed instructions on the
correct placement of sensors. Therefore, it is cumbersome re-
search settings requiring flexibility. Further, the self-adhesive
stick on electrodes can cause discomfort when removed and
may leave behind residue.

Mobility
A huge benefit of most wrist-worn devices is their mobility as-
pect. Without the need of cables, they allow the unconstrained
movement of the participant. Additionally, their relatively long
battery lifetime allows for them to be worn for a long time
without the need to charge. While the Apple Watch promises
a an ’all-day’ battery life of 18 hours and the Microsoft Band
48 hours [31, 3], the Polar provides 400 hours of heart rate
recording [17]. The Nexus promises more than 24 hours of
operation [44]. All of the devices are advertised as wearable,
but the Nexus would hardly be suitable for e.g. sleep studies,
due to its bulky nature.

Data Richness
All of our test devices provided a different set of data varying
in granularity. Looking at the heart rate measures alone, the
Nexus provided a raw-ECG signal with a frequency of 256 Hz,
while the Polar ECG chest belt did not allow access to the raw
signal. On the contrary, the Apple Watch provided roughly
one heart rate sample per second. Not just the granularity of
a device is important, but also the diversity of sensors. The
Microsoft Band is particularly richly equipped for a consumer
device with e.g. heart rate, skin temperature, EDA, and UV
sensors compared to other wrist-worn wearables.

Data Accessibility
Not just the richness of sensors is important, but also the
ease of access to the data. The BioTrace+ software suite,
which accompanies the Nexus, provides easy export and even
real-time data visualizations making an access easy. Apple
included HealthKit in their iOS system which allows CSV
export of the collected heart rate samples. The Polar and
Microsoft Bands sensor data is mere accessible through mobile
APIs, which have to be included in a data collection app, or
third-party applications. Here it becomes obvious that the ease
of data accessibility needs to be improved.
9approximated weight by the manufacturer:
www.mindmedia.info/CMS2014/products/systems/nexus-10-mkii

www.mindmedia.info/CMS2014/products/systems/nexus-10-mkii


Advantages and Disadvantages
Considering the four named dimensions of the discussed de-
vices, we illustratively summarized the fulfillment of each
criteria per each device in Figure 3.

As can be seen, the Nexus kit covers three of the five dimen-
sions and only lacks the comfort of attachment and mobility
due to its bulkiness and the self-adhesive electrodes. If high
data accuracy and richness is a prerequisite and the laboratory
setting does not require much movement and physical activ-
ity from the participants, the Nexus kit serves as a reliable
measurement tool for physiological data. It could hereby be
suitable for stationary HCI studies, like e.g. desktop usability
evaluations. On the contrary, comfort of attachment is an im-
portant criteria that needs to be considered; the more so when
conducting studies with special groups e.g. children or men-
tally disabled people. Requiring wearables for non-stationary
settings and field studies, e.g. for the evaluation of ambient
interfaces, surely the PPG wrist devices provide the highest
comfort of attachment and mobility.

A distinct disadvantage of ECG-based devices over wrist-PPG
technology, is their data reliability. While the Microsoft Band
proved to be the least reliable wrist-device in terms of heart
rate and skin temperature, it showed to be rich in the provided
sensor data and provides three relevant sensor for measuring
stress responses and further studies on the reliability of a
sensor fusion of this data are outstanding. The Apple Watch,
which also lacks data reliability, though to a lesser degree than
the Microsoft Band, provides better accessible data.

In terms of data accessibility the Polar chest belt performs
poorly compared to Nexus and Apple Watch. Another draw-
back lies in data richness since it only assesses heart rate.
Nevertheless, the Polar ECG chest belt serves as convenient
alternative to the usually used laboratory devices. Its sufficient
data reliability, easy attachment and mobility due to long bat-
tery lifetime make it suitable for long-term field studies, e.g.
long-term effects of technology usage on stress.

Concluding, researchers should weigh the pros and cons for
utilizing the discussed sensing technologies considering study
setup, flexibility needed and purpose of the study.

Limitations
Although our results are giving important insights into the
reliability of physiological data accessed by wearables, we
tested only a limited amount of devices. Facing the variety
of wearable (fitness) devices, our results may not apply for
each of them and therefore are not generalizable. Further, the
reliability of wrist-worn PPG heart rate sensors is influenced
by factors, like skin pigmentation [65], which have not been
assessed during the study. Our results are based on short-term
data acquisition of approx. 20 minutes. It would be definitely
interesting to validate the device performance in a longitudinal
setting also including more participants. Since all participants
were students with engineering background, there are implica-
tions on the performance during the mental arithmetic tasks
(MAT). Although we could show by the subjectively assessed
measures that participants felt more stressed in the MAT con-
ditions, we did not track task performance i.e. error rate. A

further investigation of participants’ task performance and the
adaptive adjustment of the MAT’s difficulty would be interest-
ing to observe also with respect to subjective and physiological
stress measures.

CONCLUSION AND FUTURE WORK
By this work, we first contribute a comparison between PPG,
wrist devices (Apple Watch, Microsoft Band 2) against an
ECG chest strap (Polar H7 chest belt) and a laboratory mea-
surement instrument with stick-on ECG technology (Nexus
10 kit) under different physical and stressful conditions. To
evaluate the reliability of the named sensing technologies, we
investigated the differences in physiological data measured by
the devices (Hypotheses 1a and H1b) confirming that PPG-
wearables tend to be less accurate in movement and the data
gets less suitable for sensitive research settings. We further
checked the influence of stress on physiological data under
stationary and physical activity (Hypothesis 2) which could be
only partly confirmed owed to the lack of accuracy in the de-
vices. As another contribution, we could show that perceived
stress and arousal (tense and wake) correlate with the physio-
logical data suggesting a strong relation between physiological
and subjectively felt stress, whereas there no correlations for
valence and dominance observed (Hypotheses 3). Based on
our findings, we lastly contribute a Design Space for Wear-
ables Used in Research Settings addressing five dimension
covering important criteria for choosing an appropriate mea-
surement tool for research purposes.

In future work, we plan to investigate noise reduction by us-
ing the accelerometer data, which is readily available in most
consumer devices. Therefore, we will compare more wear-
ables involving new products using improved sensors and data
extraction algorithms. Also most of these wearables are not
scientifically validated for their accuracy and validity. Novel
consumer devices even target well-being aspects and stress
such as the Garmin Vivosmart 310, which claims to use HRV
to calculate a proprietary stress score throughout the day. In
terms of stress and emotion detection, we plan to have a closer
look at stress detection through wearables in the wild as there
are already approaches based on mobile sensing data [10, 40].
The combination of those approaches with wearable phys-
iological data could lead to more accurate predictions and
models [20].

By this work we believe to have presented a first step towards
assessing sensing technologies in wearables for their reliability
and accuracy, as well as having provided fruitful insights for
other researchers when it comes to decide which measurement
tool to use in a study.
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